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In the last paragraph of the preface the first phrase should read: The
example of the binomial distribution — sketched on Fig. 5.1 — represents
300 years of research in statistics.
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Chapter 1

Knowledge and Logic

As yet there are no corrections to Chap. 1.
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Chapter 2

Bayes’ Theorem

Following Eq. (2.9) the text should be: The absolute value | . . . | apppears
because dξ/dη may be positive or negative. It must, however, have the same
sign everywhere.

In the second phrase after Eq. (2.27) it should read: The posteriors (2.20)
for N = 3 and N = 4 . . .

After Eq. (2.29) plus two more sentences it should read: . . . lower part
of the figure. The eight events are indicated by the dots on the abscissa. It
is rectangular . . .
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Chapter 3

Probable and Improbable Data

In the caption of Fig. 3.8 the second phrase should read: This curve is a
version of the chi-squared distribution with 7.4 degrees of freedom; see Sect.
4.1.3

The second last phrase of Chap. 3 should read: Let us note that the
distribution w becomes a chi-squared distribution with N = 2α degrees of
freedom . . .
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Chapter 4

Description of Distributions I:

Real x

In the second line of Eq. (4.5) there should be the fourth power of σ .
The third line of the paragraph that begins after Eq. (4.8) should read:

. . . considered as the sum of sufficiently many contributions that all follow
the same distribution.

The footnote on p. 48 should be modified: . . . in the first edition of this
book. The present definition is easier and more commonly used.

In Fig. 4.2 the abscissa should be labelled T .
The paragraph that ends after Eq. (4.46) should be completed with

the phrases: This occurs because neither the first moment t nor the second
moment t2 exist of the distribution (4.45). They are necessary for z to
approach a Gaussian distribution.
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Chapter 5

Description of Distributions II:

Natural x

There is no correction to Chap. 5.
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Chapter 6

Form Invariance I

Following Eq. (6.5) insert the demand: The interested reader should
answer the question:
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Chapter 7

Examples of Invariant Measures

There are no corrections to Chap. 7.
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Chapter 8

A Linear Representation of

Form Invariance

There are no corrections to Chap. 8.
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Chapter 9

Going Beyond Form Invariance:

The Geometric Prior

In the second line of p. 104 it should read: Its elements estimate the
second derivative of − ln p ,

In Eq. (9.16) the sum reaches from ν = 1 to ν = n .
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Chapter 10

Inferring the Mean or the

Standard Deviation

At the end of the introductory remarks on p. 115 there should be men-
tioned: Section A.10 gives the solutions to the problems suggested to the
reader.
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Chapter 11

Form Invariance II: Natural x

There are no corrections to Chap. 11.
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Chapter 12

Item Response Theory

In the References on p. 149 under number 3 it should read: . . . a theory
of objectivity in comparisons . . . ed. by L.J.Th. van der Kamp . . .

In Ref. 14 it should read: . . . Published by Springer VS, Wiesbaden 2018
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Chapter 13

On the Art of Fitting

The text after Eq. (13.3) should read: with N degrees of freedom; see
Sect. 4.1.3. We assume that all σk are equal to unity. Then the scaling
parameter is

The text after Eq. (13.5) should read: If the actual T is much larger . . .
The text after Eq. (13.9) should read: The position of the maximum . . .
The text after Eq. (13.10) should read: The interested reader may want

to verify this estimate.
The paragraph beginning before Eq. (13.11) should read: We can redefine

η such that ηML does not depend on N . This is reached if one shifts the
parameter η to

The left hand side of Eq. (13.15) should read χ̃sq
N (y|η′)

Eq. (13.17) should read q(nk|λk) =
λ
nk
k
nk!

e−λk ,
The text after Eq. (13.34) should read: The expression (13.33) is a

likelihood function. . . .
In both lines of Eq. (13.35) the minus should be replaced by a plus sign.
The line that introduces Eq. (13.37) should read: The Fisher function of

(13.36) is
The second paragraph of Sect. 13.4 should end with the statement: . . .

the Shannon information of a form invariant model becomes independent of
the parameterisation of the model.
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Chapter 14

Summary

The last lines of the first paragraph of Sect. 14.1 should read: . . . needed
to make the posterior independent of the prior, [1]. As long as the prior
remains arbitrary, one can generate any posterior.

In the fifth line of the last paragraph of Sect. 14.1 it should read: that
is, whether the observed events x1, . . . , xN comply with the distribution
p(x1, . . . , xN |ξpre) .

The second paragraph of Sect. 14.2 should read: . . . The test is widely
used to assess the quality of a fit. The present method yields a chi-squared
criterion that is simmilar to the test. However, the criterion rejects “over-
fitting”. It rejects fits that come too close to observation. In particular, it
rejects a fit that reproduces the observed x point by point. One can do so
by Occam’s argument . . .

Following Eq. (14.1) it should read: . . . a given level and its nearest
neighbour when the mean level distance is unity. It is certainly . . .

In the paragraph on p. 171 that begins with “It is possible that” it should
read in the 8th line: a model p(s|ξ) that interpolates . . .

The last paragraph of Sect. 14.3 should read: It remains the mystery that
probability distributions are ordered by a symmetry although their events do
not know of each other. They happen independently. To which extent are
events independent that have a common observer?
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Appendix A

Problems and Solutions

In the present appendix, we give the solutions or hints to the solutions of the
problems that have been posed within the main text of the book.
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A.1 Knowledge and Logic

A.1.1 The Joint Distribution

The phrase after Eq. (A.1) should be continued as follows: . . . not condi-
tioned by x2 ; it is independent of x2 .

The words “A proof by induction yields” should be replaced by: Since
any pair of the xk is statistically independent of each other, one obtains
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A.2 Bayes’ Theorem

A.2.1 Bayes’ Theorem under Reparameterisations

There is no correction to this subsection.

A.2.2 Transformation to the Uniform Prior

After Eq. (A.6) one should insert: When µ(ξ) was already uniform, then η
becomes a linear transformation of ξ and thus µT (η) will again be a uniform
prior.

A.2.3 The Iteration of Bayes’ Theorem

There is no correction to this subsection.

A.2.4 The Gaussian Model for many Events

There is no correction to this subsection.

A.2.5 The Distribution of Leading Digits

After the phrase following Eq. (A.10) one should insert: The function log is
the logarithm to the basis of 10 .

After Eq. (A.11) one should insert: Here, the function ln is the natural
logarithm.
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A.3 Probable and Improbable Data

A.3.1 The Size of an Area in Parameter Space

There is no correction to A.3.1.

A.3.2 No Decision without Risk

There is no correction to A.3.2.

A.3.3 Normalisation of a Gaussian Distribution

There is no correction to A.3.3.

A.3.4 The Measure of a Scale Invariant Model

There is no correction to A.3.4.

A.3.5 A Single Decay Event

There is no correction to A.3.5.

A.3.6 Normalisation of a Posterior of the Gaussian

Model

There is no correction to A.3.6.

A.3.7 The ML Estimator from a Gaussian Likelihood

Function

There is no correction to A.3.7.
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A.3.8 The ML Estimator from a chi-squared Model

There is no correction to A.3.8.

A.3.9 Contour Lines

There is no correction to A.3.9.

A.3.10 The Point of Maximum Likelihood

There is no correction to A.3.10.
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A.4 Description of Distributions I:

Real x

A.4.1 The Mean of a Gaussian Distribution

There is no correction to A.4.1.

A.4.2 On the Variance

There is no correction to A.4.2.

A.4.3 Moments of a Gaussian

There is no correction to A.4.3.

A.4.4 The Normalisation of a Multidimenional

Gaussian

There is no correction to A.4.4.

A.4.5 The Moments of the Chi-Squared Distribution

There is no correction to A.4.5.

A.4.6 Moments of the Exponential Distribution

There is no correction to A.4.6.
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A.5 Description of Distributions II:

Natural x

A.5.1 The Second Moments of the Multinomial Dis-

tribution

There is no correction to A.5.1.

A.5.2 A Limit of the Binomial Distribution

There is no correction to A.5.2.
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A.6 Form Invariance I

A.6.1 Every Element can be Considered the Origin of

a Group

There is no correction to A.6.1.

A.6.2 The Domain of Definition of a Group Parameter

is Important

There is no correction to A.6.2.

A.6.3 A Parameter Representation of the Hyperbola

There is no correction to A.6.3.

A.6.4 Multiplication Functions for the Symmetry Groups

of the Circle and the Hyperbola

There is no correction to A.6.4.

A.6.5 The Group of Dilations

There is no correction to A.6.5.

A.6.6 The Combination of Translations and Dilations

There is no correction to A.6.6.

A.6.7 Reversing the Order of Translation and Dilation

There is no correction to A.6.7.
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A.6.8 A Transformation of the Group Parameter

There is no correction to A.6.8.

A.6.9 A Group of Transformations of the Group Pa-

rameter

There is no correction to A.6.9.

A.6.10 The Model p is normalized when the Common

Form w is Normalized

There is no correction to A.6.10.

A.6.11 Two Expressions Yielding the Measure µ

There is no correction to A.6.11.

A.6.12 Form invariance of the Posterior Distribution

There is no correction to A.6.12.

A.6.13 Invariance of the Shannon Information

There is no correction to A.6.13.
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A.7 Examples of Invariant Measures

A.7.1 The Invariant Measure of the Group of

Translation-Dilation

There are no corrections to A.7.1.

A.7.2 Groups of Finite Volume

There are no corrections to A.7.2.

A.7.3 The Inverse of a Triangular Matrix

There are no corrections to A.7.3.

A.7.4 The Invariant Measure of a Group of Triangular

Matrices

There are no corrections to A.7.4.
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A.8 A Linear Representation of Form Invari-

ance

A.8.1 Transforming a Space of Square Integrable

Functions

There is no correction to A.8.1.

A.8.2 An Integral Kernel

There is no correction to A.8.2.
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A.9 Beyond Form Invariance:

The Geometric Prior

A.9.1 Jeffreys’ Rule Transforms as a Density

There is no correction to A.9.1.

A.9.2 The Fisher Matrix is Positive Definite

There is no correction to A.9.2.

A.9.3 The Measure on the Sphere

There is no correction to A.9.3.

A.9.4 Another Form of the Measure on the Sphere

There is no correction to A.9.4.
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A.10 Inferring the Mean or the

Standard Deviation

A.10.1 Calculation of a Fisher Matrix

There is no correction to A.10.1.

A.10.2 The Expectation Value of an ML Estimator

There is no correction to A.10.2.
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A.11 Form Invariance II: Natural x

A.11.1 The Identity of two Expressions

There is no correction to A.11.1.

A.11.2 Form Invariance of the Binomial Model

There is no correction to A.11.2.

A.11.3 The Multiplication Function of a Group of Ma-

trices

In the the first line of A.11.3 it should read: Show that the multiplication
function φ of the group . . . is

A.11.4 An ML Estimator for the Binomial Model

There is no correction to A.11.4.

A.11.5 A Prior Distribution for the Poisson Model

There is no correction to A.11.5.

A.11.6 A Limiting Case of the Poisson Model

There is no correction to A.11.6.
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A.12 Item Response Theory

A.12.1 Expectation Values Given by the Binomial Model

There is no correction to A.12.1.



52

A.13 On the Art of Fitting

A.13.1 A Maximum Likelihood Estimator

There is no correction to A.13.1.

A.13.2 Gaussian Approximation

to a Chi-Squared Model

There is no correction to A.13.2.



Appendix B

Description of Distributions I:

Real x

Following Eq. (B.26) the text should read: for positive real part of z . This
is given in . . .

Preceding Eq. (B.33) it should read: . . . the substitution βx = t2γ−2

yields . . .
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Appendix C

Form Invariance I

There is no correction to Chap. C.
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Appendix D

Beyond Form Invariance: The

Geometric Prior

There is no correction to Chap. D.
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Appendix E

Inferring Mean or Standard

Deviation

There is no correction to Chap. E.
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Appendix F

Form Invariance II: Natural x

There is no correction to Chap. F.
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Appendix G

Item Response Theory

There is no correction to Chap. G.
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Appendix H

On the Art of Fitting

We have completely rewritten the present appendix because in the second
edition of the present book it was too sketchy to be understandable.

H.1 The Geometric Measure on the Scale

of a Chi-Squared Distribution

According to the second line of Eq. (9.18) the geometric measure on the
scale of η is

µg(η) =
1

2

[

F (η)
]1/2

, (H.1)

if F is the Fisher function of Eq. (9.2), which means

F (η) = −
∫

dy χ̃sq
f (y|η)

∂2

∂η2
ln χ̃sq

f (y|η) , (H.2)

and χ̃sq
f (y|η) is the model (13.7). This yields

F (η) = −
1

Γ(f/2)

∫

∞

−∞

dy exp
(f

2
[y − η]− ey−η

) ∂2

∂η2

(f

2
[y − η]− ey−η

)

=
1

Γ(f/2)

∫

dy exp
(f

2
[y − η]− ey−η

)

ey−η
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=
1

Γ(f/2)

∫

∞

−∞

dy exp
(

(
f

2
+ 1)[y − η]− ey−η

)

=
Γ(f/2 + 1)

Γ(f/2)

=
f

2
. (H.3)

For the step from the third to the fourth line of this equation, one uses the
fact that χ̃sq

N is normalised to unity. The last line follows from Eq. (B.24) in
Appendix B. By Eq. (H.1) one obtains

µg(η) =
(f

8

)1/2
. (H.4)

H.2 Convoluting Chi-Squared Distributions

Let a set of positive numbers tk , k = 1, . . . , N , be given so that each one
follows a chi-squared distribution (4.34). The distribution of tk ,

qk(tk|ξ) =
ξfk/2

Γ(fk/2)
tfk/2−1
k exp(−tkξ) , 0 < tk, ξ < ∞ , (H.5)

shall have the number fk of degrees of freedom. The fk are positive; they
need not be integer. For k ≠ k′ the number fk may be different from fk′ .
We show that the quantity

T =
N
∑

k=1

tk (H.6)

follows the chi-squared distribution with

f tot =
N
∑

k=1

fk (H.7)

degrees of freedom. In Eq. (13.23) we have made use of this theorem. It is
a consequence of the convolution theorem . We explain the notion of “con-
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volution” and state the theorem. It describes the structure of the Fourier1

transform of a convolution. From this follows the distribution of T , see Sect.
H.4. The Fourier transform is defined in Sect. H.3.

The convolution q1 ◦ q2(x) of the functions q1(t1|ξ) and q2(t2|ξ) is

q1 ◦ q2 (T ) =
∫

∞

0
dt2 q1(T − t2|ξ)q2(t2|ξ)

=
∫

∞

0
dt1

∫

∞

0
dt2 δ(T − t1 − t2)q1(t1|ξ)q2(t2|ξ)

0 < T < ∞ , (H.8)

where δ(x) is Dirac’s δ distribution. Integrating q1 ◦ q2 over T from 0 to ∞
yields unity since the distributions qk are normalised to unity. The N -fold
convolution is

q1 ◦ . . . ◦ qN (T ) =
∫

∞

0
dt1 . . .

∫

∞

0
dtN δ(T −

N
∑

k=1

tk)
N
∏

k=1

qk(tk) . (H.9)

This convolution is again normalised to unity.
According to Eq.(H.17) the Fourier transform of qk is

Fk(z) =
1√
2π

∫

∞

−∞

dtk qk(tk|ξ)eiztk . (H.10)

Here, we set qk(tk|ξ) equal to zero for negative values of tk in order to obtain
the integration from−∞ to∞ required by the definition (H.17) of the Fourier
transform. Equation (H.32) says that

Fk(z) =
ξfk/2√
2π

1

(ξ − iz)fk/2
. (H.11)

Let F1◦2 be the Fourier transform of q1 ◦ q2 . The convolution theorem
says that F1◦2(z) equals the product of F1 and F2 ,

F1◦2(z) = F1(z)F2(z) , (H.12)

1Joseph Fourier, 1768–1830, French mathematician and physicist, member of the

Académie des Sciences. He studied the transport of heat in solids. In this context he

discovered the possibility to expand distributions into the series which nowadays carries

his name.
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see entry 3 in Sect. 12.22 of [2]. It follows

F1◦2(z) =
ξ(f1+f2)/2

2π

1

(ξ − iz)(f1+f2)/2
. (H.13)

This can be generalised to the statement: the Fourier transform F1◦...◦N (ξ) of
the N -fold convolution (H.9) equals the product of the N Fourier transforms
Fk ,

F1◦...◦N (ξ) =
N
∏

k=1

Fk(ξ) . (H.14)

since — according to Eq. (H.9) — the operation of convoluting is commu-
tating and associative. This yields

F1◦...◦N (z) =
ξf

tot/2

(2π)N/2

1

(ξ − iz)ftot/2
, −∞ < z < ∞ , 0 < ξ < ∞ , (H.15)

where f tot is given by Eq. (H.7).
Inverting the Fourier transformation that gave (H.15), one finds

ξf
tot/2

(2π)(N+1)/2

∫

∞

−∞

dz
e−iT z

(ξ − iz)ftot/2

=

⎧

⎨

⎩

ξf
tot/2

Γ(ftot/2)T
ftot/2−1 exp(−T ξ) for T > 0

0 for T < 0 ,
(H.16)

see Eqs. (H.33), and (H.26). Thus the quantity T of Eq. (H.6) follows a
chi-squared distribution with f tot degrees of freedom which was to be shown.

H.3 Definitions of Fourier Transforms

Let q(t) be a real function which can be integrated over the whole real
axis, i.e. the integral

∫

∞

−∞

dt q(t)

exists. We do not require the function q(t) to be regular at all t . The Fourier
transform

F (z) =
1√
2π

∫

∞

−∞

dt q(t)eizt (H.17)
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exists for all real z . This definition of is found in Sect. 12.21 of [2].
The Fourier transform is an expansion of q in terms of the orthogonal

functions
1√
2π

eizt .

They are orthogonal in the sense that

1

2π

∫

∞

−∞

dt ei(z−z′)t = δ(z − z′) (H.18)

according to the entry 1 in Sect. 12.23 of [2].
The inversion of the Fourier transform is given in Sect. 12.21 of [2] to be

q(t) =
1√
2π

∫

∞

−∞

dz F (z)e−izt . (H.19)

Antisymmetric and symmetric functions q can be expanded into the so-
called Fourier sine and Fourier cosine transforms

Fs(z) =
( 2

π

)1/2
∫

∞

0
dt q(t) sin(zt) (H.20)

and

Fc(z) =
( 2

π

)1/2
∫

∞

0
dt q(t) cos(zt) , (H.21)

see Sect. 12.31 of [2]. The symmetric and antisymmetric parts of q(t) — in
the sense of a reflection at the origin — are picked up by the cosine and sine
transformations. The symmetric part is

qS(t) =
1

2

(

q(t) + q(−t)
)

(H.22)

while

qA(t) =
1

2

(

f(t)− f(−t)
)

(H.23)

is the antisymmetric part. This leads to

F (z) =
1√
2π

∫

∞

−∞

dt
[

qS(t) + qA(t)
][

cos(zt) + i sin(zt)
]

=
1√
2π

∫

∞

−∞

dt
[

qS(t) cos(zt) + iqA(t) sin(zt)
]

(H.24)

because the integrals over products of a symmetric function with an anti-
symmetric one vanish. It follows

F (z) =
( 2

π

)1/2
∫

∞

0
dt

[

qS(t) cos(zt) + iqA(t) sin(zt)
]

. (H.25)
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H.4 The Fourier Transform of the Chi-Squared

Distribution

We are interested in the Fourier transform F (z) — defined in (H.17)
— of the chi-squared distribution (H.5). This means to derive the Fourier
transform F (z) of the distribution

q(t|ξ) =

{

ξf/2

Γ(f/2) t
f/2−1 exp(−tξ) for x > 0

0 for x < 0 .
(H.26)

For simplicity we have omitted the index k that appears in Eq. (H.5). Thus
f is not a function but rather the number of degrees of freedom of the chi-
squared distribution. Note that ξ in the present context is a fixed number
that conditions the distribution q .

Equation (H.26) defines q such that both, its symmetric and its antisym-
metric part, equal q(t|ξ)/2 for positive t . In this case Eq. (H.25) yields the
Fourier transform

F (z) =
1

2

[

Fc(z) + iFs(z)
]

. (H.27)

The Fourier cosine transform Fc is given as entry 147 of Sec. 12.34 in [2].
One finds

Fc(z) =
(2

π

)1/2
ξf/2(ξ2 + z2)−f/4 cos

(f

2
tan−1 z

ξ

)

. (H.28)

The Fourier sine transform is

Fs(z) =
( 2

π

)1/2
ξf/2(ξ2 + z2)−f/4 sin

(f

2
tan−1 z

ξ

)

, (H.29)

see entry 16 of Sec. 12.33 in [2]. Equation (H.27) then gives

F (z) =
ξf/2√
2π

(

ξ2 + z2
)

−f/4
exp

(

i
f

2
tan−1 z

ξ

)

,

−∞ < z < ∞ ,

0 < ξ < ∞ . (H.30)

The arctangent of z/ξ is the phase of the complex number ξ + iz , i.e.

tan−1 z

ξ
= arg(ξ + iz) . (H.31)
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Therefore Eq. (H.30) takes the form

F (z) =
ξfk/2√
2π

(ξ2 + z2)−fk/4 exp
(

i
fk
2
arg(ξ + iz)

)

=
ξfk/2√
2π

[

(ξ2 + z2)1/2 exp (− i arg(ξ + iz))
]

−fk/2

=
ξfk/2√
2π

(ξ − iz)−fk/2

=
1√
2π

1

(1− iz/ξ)fk/2
, −∞ < z < ∞ , 0 < ξ < ∞ .(H.32)

This is the Fourier transform of the function defined in Eq. (H.26).
The inversion (H.19) of this Fourier transformation yields the function in

Eq. (H.26),
1

2π

∫

∞

−∞

dz,
e−izt

(1− iz/ξ)f/2
= q(t|ξ) , (H.33)

from which we started.
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