Corrections and Comments to Bayesian Inference — Parameter Estimation and Decisions published by Springer, Heidelberg 2003

H.L. Harney

November 4, 2005

1 Knowledge and Logic

No comments.

2 Bayes' Theorem

One requires the existence of the integral in Eq. (2.5). If it does not exist, the posterior distribution (2.6) does not exist and the parameter ξ cannot be inferred.

3 Probable and Improbable Data

From Tab. 3.1, one sees that 1-K becomes very small if $\Delta \xi$ is a few σ . Therefore K is often expressed as $\Delta \xi/\sigma$, i.e. the length of the corresponding error interval in units of σ .

4 Description of Distributions I: Real x

In footnote 1 on p. 29, the name Gauß should be written with the German sharp s.

5 Description of Distributions II: Natural x

No comments.

6 Form Invariance I: Real x

The matrix \mathbf{m} used in Eq. (6.36) is a metrical tensor in the vector space in which the curve (6.32) is imbedded. One can also define a metric on the curve, more generally a metric on curved surfaces. This is a metric in the space of the parameter(s) ξ . The Fisher matrix defined in ch. 9 turns out to be the metrical tensor in the space of ξ . The fact that in the present book \mathbf{m} always equals unity is due to a common property of all transformation groups of form invariant models: The transformations are all orthogonal in the sense of ch. 8. The hyperbolic transformation (6.6) is not orthogonal.

7 Examples of Invariant Measures

No comments.

8 A Linear Representation of Form Invariance

The text before Eq. (8.1) should read: "We consider the function f(x) as a vector f with the components $f_x = f(x)$. In the sequel the components are written in both ways, f_x or f(x)."

Equation (8.15) should read

$$\left(\mathbf{G}_{\xi}f\right)_{x} = f(G_{\xi}^{-1}x) \left| \frac{\partial G_{\xi}^{-1}x}{\partial x} \right|^{1/2}.$$

9 Beyond Form Invariance: The Geometric Prior

Equation (9.17) shows that the Fisher matrix is the metrical tensor on the surface $a(\xi)$. Thus the manifold of the probability amplitudes becomes a Riemannian space. See e.g. *Encyclopedia Britannica* 15th edition, Vol. 1, p.791, article on *Analysis*, *Vector and Tensor*.

10 Inferring the Mean or Standard Deviation

In the 4th line following Eq. (10.35), the first "in" is superfluous.

11 Form Invariance II: Natural x

In the second exponential on the r.h.s. of Eq. (11.22), there should be a bracket (before ξ .

12 Independence of Parameters

No comments.

13 The Art of Fitting I: Real x

In Eq. (13.4), the range of the indices should read

$$\nu, \nu' = 1, \dots, n. \tag{1}$$

In Eq. (13.5), the summation over k is erroneous and should be omitted. The symbol β is used in Eq. (13.1) to denote a function of t and ξ . In Eq. (13.7), the same symbol β is used to denote the vector composed of all β_k . It should read $\vec{\beta}$ when the vector is meant.

In Eq. (13.25), a minus-sign is missing in front of the lower left element of the matrix.

14 Judging a Fit I: Real x

In section 14.2, a piece of text has been printed twice. The text following equation (14.10) "We simplify this ..." should be omitted until and including equation (14.12).

15 The Art of Fitting II: Natural x

Section 15.7 must be reformulated in the future. — Certainly, the condition (15.55) ensures the orthogonality of the vectors c(1) and c(2). In this limit, the result on the parameter ξ'_1 characterizing the intensity of the peak becomes independent of the result on the level of the background. Although this situation is desirable, one can extract ξ'_1 even if it is not given. After appropriate integration over ξ'_2 the error of ξ'_1 will take care of the interrelation between peak and background.

In order to treat incoherent alternatives satisfactorily, one should express them as a density matrix. This posibility has not been explored in the present book.

16 Judging a Fit II: Natural x

No comments.

17 Summary

No comments.